
Asynchronous Programming

It’s hard...

Possible solutions

• Threading

• Callbacks

• Promises

• Futures

• Reactive Extensions

Threading

1

2

3

Threaded

Threading

• Threads are expensive - context switches

• Threads are not possible - single threaded targets

• Threads are not desirable - state mutations, UI threads

Callbacks

callback

async

Callbacks

• Error handling can be complicated

• Callback hell a.k.a. tilted Christmas Tree

Promises, Futures and Rx

promise

composable

Futures, Promises and Rx

• Error handling can be complicated

• Thinking of different constructs on different platform

• Changing the way of thinking for sync vs async (move to streams)

Kotlin Coroutines

Coroutines

explicit coroutine context

1

2

3

suspending function

natural signature

Coroutines

• Same way of thinking for sync and async

• Same way of doing things (exception handling, loops, etc.)

• Same constructs

• Lightweight threads

• Long time existing concepts

How they work

callback

Kotlin

Java/JVM

How they work
Kotlin

Java/JVM

Constructs

• Builders (launch, runBlocking, async): regular world to coroutine world

• Suspending functions (suspend): from coroutine to coroutine

• suspendCoroutine: coroutine to callback

