
KOTLIN AND BLUETOOTH
or Better Living With Coroutines

Eventually 
 

Neal Maloney  
neal.maloney@shrinkray.com.au

WHO AM I
➤ Mostly a Java Developer for about 20 years

➤ Android Developer for around 8 years (since Cupcake)

➤ Developing BLE code for around 4 years (since late JellyBean/
KitKat)

➤ Commercial projects have included:

➤ AlertShirt and FanShirt football jerseys (vibrating clothing)

➤ NADI X Yoga Pants early development (clothing with
positional sensors)

➤ SleepSense (sleep tracking and controls for bed)

➤ Cochlear Nucleus Smart App

THE INTERNET OF THINGS

➤ Loosely defined as the world of connected computing devices
embedded in every day objects.

➤ BLE is one of the primary ways of communicating with these
objects because of it’s power efficiency.

➤ Spans from insecure, simple devices like keychain trackers and
smartphones to higher security, more complicated devices like
fitness trackers and Cochlear’s Nucleus 7 sound processor.

BLUETOOTH LE

➤ Fairly simple protocol at the application developer level.

➤ Supports relatively light level of encryption that is crackable
with off the shelf tools.

➤ Robust connection and data transmission.

➤ Relatively simple data structure once connected. A connected
client can read from, write to and receive notifications of
changes to characteristics defined by the device.

ANDROID BLUETOOTH LE
➤ Developers need to work around and with:

➤ No queue. The BluetoothGatt object will happily let you make
multiple reads/writes at the same time. What happens is somewhat
undefined and usually results in reads/writes getting dropped by the
stack. So you need to implement some form of queuing.

➤ Asynchronous callbacks to reads/writes, notifications and
connection issues… but not always on defined threads. Some phones
will call the ‘asynchronous’ callback from the initiating thread before
returning from the function that made call responsible for it.

➤ Need to not block the callback functions.

➤ Bugs… e.g. Edge case allowed in the BLE specification for
manufacturer data where Android was effectively dropping data.
Resulted in having to parse the raw scan data ourselves.

ROBUST SOLUTIONS INVOLVE PROTOCOLS ON TOP OF BLE
➤ If you need a better level of security and are dealing with a

complicated device, you can’t just rely on the basic BLE data
layout and encryption.

➤ The reasons for this are:

➤ The encryption and negotiation at the BLE level isn’t secure
enough. You usually want some level of encryption on top of
the transport layer.

➤ Having many, many characteristics increases service discovery
time and will impact connection time (and battery life for
really low power solutions)

➤ MTU is limited, so transferring large amounts of data (e.g. for
a fitness tracker) will require splitting and re-assembly of data.

SOLUTIONS
➤ A rich API defined in XML and at least partially implemented

with generated code on both device and in the app.

➤ Network service added into the mix to provide authentication
for the user.

➤ Key exchange protocols with the device that are transparent to
the app.

➤ A system for obtaining authentication to use the device that
coordinates the authenticated user, the server, the device and
some action that provides proof of possession of the device.

➤ A seperate BLE driver module that implements an as simple as
possible interface to the device in a functional way using Rx.

BLE DRIVER
➤ The good parts:

➤ As layered/modular as possible for easier testing.

➤ Good use of generated code.

➤ Use of RxJava2 throughout.

➤ Good simple interface for the app to hide complexity.

➤ The bad parts:

➤ It’s written in Java. Lots and lots of unnecessary and
inelegant code.

➤ Use of RxJava2 throughout. Perfectly fine in some places
but a nightmare to read/maintain in others.

A TINY CHUNK OF THE CRYPTO CODE IN JAVA

BASIC KOTLIN IMPROVEMENTS

➤ Lambdas instead of anonymous classes (mostly normally
hidden by IDE though).

➤ plusAssign operator CompositeDisposable

➤ toBase64() extension function for ByteArray

➤ Type inference.

A SIMPLE CONVERSION TO KOTLIN

NOT A GREAT DEAL BETTER

➤ Lambdas instead of anonymous classes (mostly normally
hidden by IDE though).

➤ plusAssign operator CompositeDisposable

➤ toBase64() extension function for ByteArray

WITH COROUTINES

A DRIVER WRITTEN FROM SCRATCH IN KOTLIN

➤ For extending by specific device implementations.

➤ Built with extensibility and the core of a Kotlin only driver for
the main project in mind.

➤ Built using Rx to control the threading.

➤ Still investigating channels to replace a BlockingQueue used
to poll for callbacks received asynchronously from the BLE
driver.

➤ Has a the concept of channels, for reading, writing, writing
with an immediate read and notification.

CODE LINKS

https://github.com/tali3san/kotlin-bluetooth

